
Data Fragmentation in PostgreSQL

PostgreSQL is a relational database management system with a client-server architecture. At the

server side the PostgreSQL's processes and shared memory work together and build an instance, which

handles the access to the data. Client programs connect to the instance and request read and write

operations.

Architecture:

What is Fragmentation?

Fragmentation is a database server feature that allows you to control where data is stored at
the table level. Fragmentation enables you to define groups of rows or index keys within a table
according to some algorithm or scheme.

Fragmentation is often called bloating in PostgreSQL. It relates to its implementation
of MVCC (Multi-version Concurrency Control) where rows are not updated in place or directly
deleted, but are copied with a different ID. Those rows are then made visible or invisible

https://en.wikipedia.org/wiki/Multiversion_concurrency_control

depending on the transaction looking at the data. Basically, any update on the table is a Delete
– Insert where existing row is first deleted and a new row is inserted.

MVCC (Multi-version Concurrency Control)

Multi-version concurrency control (MVCC), is a concurrency control method commonly used
by database management systems to provide concurrent access to the database and in
programming languages to implement transactional memory. Without concurrency control, if
someone is reading from a database at the same time as someone else is writing to it, it is
possible that the reader will see a half-written or inconsistent piece of data.

Unlike most other database systems which use locks for concurrency
control, Postgres maintains data consistency by using a multi-version model. This means that
while querying a database each transaction sees a snapshot of data (a database version) as it
was some time ago, regardless of the current state of the underlying data. This protects the
transaction from viewing inconsistent data that could be caused by (other) concurrent
transaction updates on the same data rows, providing transaction isolation for each database
session.

Fragmentation Example (Bloating)

Let us take a simple example to understand what bloating is, how it occurs and how to get rid of
it.
Step1: Create a simple table with one column. I have created a table called datafreg which has
id column and it is also a primary key column as shown in fig below.

You can see the specifics of the table with \d <table_name> command as shown below.

https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Transactional_memory
https://en.wikipedia.org/wiki/Consistency_(database_systems)

Step2: Generate some sample data in the table. I have used generate_series function and
inserted 4000 rows. You can confirm the data inserted by using the count (*) on the table as
shown below.

Step3: Query pg_stat_all_tables to check the details on live and dead tuples. Any rows
inserted in the table will be shows as live tuples as its live data under a table and any rows that
you delete will be shown under dead tuples. As shown in the below fig, as we have inserted
4000 records, 400 live tuples are available for the table.

Step4: Also, check the size of the table along with the count. Here, I have used pg_size_pretty
function to check the size of the table. There are lot of ways to check the size of the table, you
can use any of them. As shown, the size of the table is 416 KB

Step5: Delete some rows of the table, Here I have deleted 2000 rows using the between
clause. After deleting the rows, check the tuples again, since you have 2000 rows in the table, it
shows under live tuple and you deleted 2000 rows, those are shown under dead tuple.

Step6: After deleting the rows, check the size and count of the table again. As shown below,
you will see the count has reduced to 2000 but the size of the table remains the same. It was
416 KB (Check Step 4) initially and even after deleting 2000 rows, the size of the table remains
same.

This is called bloating. Even after deleting the data, space used by the deleted data is not
released from the table. It will lie in the table and database will think that data is using the
space but in real it’s just an impression and there does not exist any data since we have deleted
it already.

Step7: In order to free up the unutilized space and defragment the table, you will need to
periodically perform VACUUM on the tables. So any tables which has high volume of DML’s
happening on it should be vacuumed periodically to make sure performance degradation does
not happen and the unused space is released to the file system.

As shown below, after vacuuming the data, the size of the table has come down from 416 KB to
144 KB keeping the number of records same.

Also, the dead tuples (2000 – Step 5) which were consuming the space even after deletion have
been removed after vacuuming the table. See the fig below.

Vacuum can be scheduled and can be performed on adhoc basis. It is very imp to create a
vacuum strategy for your postgres database. It will play a considerable part in maintaining the
performance of the database and also managing the space capacity of the file system.

