
PAGE 1

MySQL
As

NoSQL

PAGE

2

PAGE 3

▪ Srinivas Tantravahi, 16 years of Experience as DBA

▪ Worked on Retail ,Telecom,Insurance,Technology,Healthcare Domains.

▪ Worked on Mysql,Sqlserver ,Azure Cosmos,Postgres,MongoDB,Cassandra,Influx DB.

▪ Contact : srinimysqldba@gmail.com

▪ Ktexperts mysqlDB group

▪ https://www.linkedin.com/in/tantrasunil/

Introduction

mailto:srinimysqldba@gmail.com

Course Outline

PAGE 4

Background of NoSQL

Use cases

MySQLX dev API architecture

Classic MySQL protocol vs X protocol (NoSQL)

MySQL shell overview

Working with MySQL Vs Mongodb (commands)

Course Outline

PAGE 5

Using tables and collections in the database (MySQL + NoSQL)

Importing JSON to collections

Query Performance and Fine tuning

High Availability

MySQL on Cloud

Questions

Background of NoSQL

▪NoSQL databases are non-tabular databases and store data differently
than relational tables

▪ The main types are document, key-value, wide-column, and graph

▪ They provide flexible schemas and scale easily with large amounts of data
and high user loads

▪NoSQL and SQL applications can simultaneously access the same data

PAGE 6

Background of NoSQL

Terminology in Nosql

➢Database: A database base Is a collection of documents
And metadata

➢Document: This is the collection of data

➢Collection: Data

PAGE 7

Use cases

PAGE 8

▪No need to subscribe/licensing to MongoDB in cloud environments

▪Mysql on Azure / AWS / Oracle cloud is very cheap when compared to
NO SQL database like cosmos DB / dynamodb.

▪ Since no configurations are necessary from Mysql it’s easy to deploy
with the existing InnoDB engine

MySQLX API Architecture
MySQL

PAGE 9

Classic MySQL protocol vs X protocol (NoSQL)

▪ Classisc protocol: Mysql listens on port 3306

▪ X protocol :

➢ In order to use Mysql as document DB, we need to connect to Mysql as X protocol,
which listens to port 33060.

➢Fully integrated with Mysqlshell

➢X Plugin is enabled by default in MySQL Server as of MySQL 8.0

➢Refer to the below link for further documentation (https://dev.mysql.com/doc/x-
devapi-userguide/en/)

PAGE 10

MySQL shell overview
MySQL Shell includes the following APIs implemented in JavaScript and Python which you can use to develop code that interacts with
MySQL.

Admin API :

AdminAPI enables you to administer MySQL instances, using them to create InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet
deployments, and integrating MySQL Router.

AdminAPI also provides operations to configure users for MySQL Router, to make integration with InnoDB Cluster, InnoDB ClusterSet,
and InnoDB ReplicaSet as simple as possible. For more information on AdminAPI, see Chapter 6, MySQL AdminAPI.

X DevAPI :

Enables developers to work with both relational and document data when MySQL Shell is connected to a MySQL server using the X
Protocol

X Protocol Support :

MySQL Shell is designed to provide an integrated command-line client for all MySQL products which support X Protocol. The
development features of MySQL Shell are designed for sessions using the X Protocol. MySQL Shell can also connect to MySQL Servers
that do not support the X Protocol using the classic MySQL protocol.

PAGE 11

MySQL shell overview

Mysql shell Modes :

SQL mode: Used to write SQL queries

JS mode: Used to write Nosql queries when connected as x protocol and used to manage InnoDB
cluster when connected as classic protocol

Python moe: used to write python programming

PAGE 12

Working with MySQL Vs Mongodb (commands)

PAGE 13

Using tables and collections in the database
(MySQL + NoSQL)

▪ A collection is a table with 2+ columns:

Primary key: `_id`

JSON document: `doc`

▪ The document’s `_id` field can be supplied or be automatically generated by server as UUID

▪ This field is also used to populate the primary key

▪ Can add extra columns and indexes to a collection

▪ SQL, NoSQL, tables, collections, all can be used simultaneously

▪ Operations compatible with replication

PAGE 14

Using tables and collections in the database
(MySQL + NoSQL)

Collection people

{

_id: 101,

FirstName

: "

LastName

: "

Street: "123 Elm Street",

State_ID

: 5

}

PAGE 15

Table states

ID Name

1 Virginia

2 New York

3 California

mysql >

SELECT 'people'.'doc'-->>>'$.firstname’,'people'.'doc'-->>>'$.lastname'

FROM

'people','states'

WHERE

'people'.'doc'->'$.State_ID'='states'.'id'

AND

'states'.'name'='California'

Importing JSON to collections

util. importJson (("restaurants.{ collection : "restaurants",convertBsonOid : true }

Migration from MongoDb to Mysql document store

Export from MongoDB

mongoexport --DB test --collection restaurants --out restaurants.json

Import into MySQL

util. importJson (("restaurants.{ collection : "restaurants",convertBsonOid : true }

PAGE 16

PAGE 17

