Declarative and Scripted pipeline job in Jenkins -PART 1

What is Pipeline in Devops?
· A pipeline is a collection of jobs that brings the software from version control into the hands of the end users by using automation tools.
· It is a feature used to incorporate continuous delivery in our software development workflow.
· There are various pipeline tools in the market and Jenkins is one among them.
· Example: Bamboo, Hudson etc.

 [image: 0_n57zykBMdOdmUg7C-1]

 [image: devops-lifecycle-tools]
What is a Jenkins pipeline?
 [image:]
· They represent multiple Jenkins jobs as one whole workflow in the form of a pipeline.
· What do these pipelines do? These pipelines are a collection of Jenkins jobs which trigger each other in a specified sequence.
Jenkins Pipeline – Core element of Continuous Integration/Continuous Delivery (CICD)
 [image: Play with Jenkins Pipeline – journey of quality]
 How it works?
 [image:]
· A Jenkins pipeline, every job has some sort of dependency – with at least with one or more events
· These pipelines are a core element of a CI/CD (Continuous Integration/Continuous Delivery) system
· These pipelines enable development teams to automate the building, testing, and deployment of their applications.

Types of Pipeline jobs:
There are two types of syntax used for defining your Jenkins pipeline jobs
1. Declarative
2. Scripted
Declarative pipeline - Syntax
Declarative:
The declarative pipeline provides a more structured and simpler syntax for defining pipelines. It is designed to be easy to read and understand, especially for those new to Jenkins and CI/CD concepts.

 [image:]
	
	

 Scripted pipeline - Syntax
Scripted:
The scripted pipeline uses a more flexible and complex scripting syntax, allowing for advanced customization and conditional logic. It provides more control and is suitable for complex build processes.
	
	 [image:]

Pipeline Syntax differences –Declarative vs Scripted
Pipeline syntax differences
· Declarative pipelines always begin with the word pipeline.
· Scripted pipelines, on the other hand, always begin with the word node.
· Declarative pipelines break down stages into individual stages that can contain multiple steps.
· Scripted pipelines use Groovy code and references to the Jenkins pipeline DSL within the stage elements without the need for steps.
· These are the key differences that allow a developer to quickly differentiate between a scripted pipeline and a declarative pipeline.

 [image: declarative vs. scripted pipeline]

Jenkins Pipeline Job(code) Concepts
Pipeline concepts
Pipeline
· This is a user defined block which contains all the processes such as build, test, deploy, etc.
· It is a collection of all the stages in a Jenkinsfile.
· All the stages and steps are defined within this block.
· It is the key block for a declarative pipeline syntax.
Node
· A node is a machine that executes an entire workflow.
· It is a key part of the scripted pipeline syntax.
· There are various mandatory sections which are common to both the declarative and scripted pipelines, such as stages, agent and steps that must be defined within the pipeline.
Agent
· An agent is a directive that can run multiple builds with only one instance of Jenkins.
· This feature helps to distribute the workload to different agents and execute several projects within a single Jenkins instance.
· It instructs Jenkins to allocate an executor for the builds.
· A single agent can be specified for an entire pipeline or specific agents can be allotted to execute each stage within a pipeline. Few of the parameters used with agents are:
 Any
 Runs the pipeline/ stage on any available agent.
 None
 This parameter is applied at the root of the pipeline and it indicates that there is no global agent for the entire pipeline
 And each stage must specify its own agent.
 Label
 Executes the pipeline/stage on the labelled agent.
 Docker
 This parameter uses docker container as an execution environment for the pipeline or a specific stage.

Stages
· This block contains all the work that needs to be carried out.
· The work is specified in the form of stages.
· There can be more than one stage within this directive.
· Each stage performs a specific task.
Steps
· A series of steps can be defined within a stage block.
· These steps are carried out in sequence to execute a stage.
· There must be at least one step within a steps directive.

Stage Section in Jenkins Pipeline Build
The “stage” section is required to segregate the work category as listed inline:
 [image:]

 [image:]

A specified pipeline will consist of several steps that can be grouped in several stages. For example:
	Stage 1
	Pull code from repository
	Pull Code CheckIn

	Stage 2
	Build your project and artifacts
	Build Project/Artifacts of Project

	Stage 3
	Deploy your application
	Deploy from centralized repo to specified environment

	Stage 4
	Perform functional tests
	QA performance will happen

	Stage 5
	Perform performance tests
	· (UI and performance can test.

Where to write or place/run ?the pipeline code ?
We can define or write pipeline code (Scripted and Declarative) either in
1) In the web UI (Jenkins UI)
2) In Jenkins file (in Repo)

Creating a Declarative Pipeline job (code in Jenkins web UI):
Checking the Master and Slave node availability
 [image:]

A) Create the pipeline job and run from the Slave node (Agent node)

 Check the Label for the Agent node
 [image:]
 [image:]

 [image:]
 Configure the Jenkins job for declarative pipeline ->
 [image:]

 [image:]

 Build the Job ->
 [image:]
 Check the Job output->
 [image:]

B) Create the declarative pipeline and run from the Master (Built-in node)
 Check the Label for the master node
 [image:]
 Configure the Jenkins job for declarative pipeline ->
 [image:]
 Build the Job ->
 [image:]

 [image:]
 Check the Job output->
 [image:]

Written by Vinod Sairam
The Database Administrator who helps to manage Enterprise Databases who develops Devops Engineering ideas to support Database tasks, Infrastructure tasks and to reach the right audience.
Assisted by Shanmugavelu. M

Declarative and Scripted pipeline job in Jenkins -PART 2

Creating a Scripted Pipeline job (code in Jenkins web UI):
 Configure the Jenkins job for scripted pipeline ->
 [image:]
 Write the code in the Jenkins Web UI ->
 [image:]
 Build the Job ->
 [image:]

 Check the Job output->
 [image:]

 [image:]
Creating a Pipeline job using Jenkins file –(code using Jenkins file in Repo):
 Copy the repository URL GITHUB ->
 [image:]

 Create the Jenkins file (with code) in GITHUB Repo ->
 [image:]
 Copy the Jenkins file URL from GITHUB->
 [image:]

 Configure the Jenkins job with Jenkinsfile option ->
 [image:]

 [image:]
 Build the Jenkins job ->
 [image:]

 [image:]
 [image:]
 [image:]
 Check the job output ->
 [image:]

 [image:]

Option ->Checking Pipeline Steps -Individual steps

 [image:]

Snipper Generator – Help/guide To generate Pipeline script

 [image:]

 [image:]

 [image:]

 [image:]

Sandbox Security option in Jenkins
 This is option is for Restricted Access
· Jenkins limits the execution of any Groovy script by providing a sandbox.
· The option “Use Groovy Sandbox,” shown below, is available in the Pipeline tab, and it allows the scripts to be run by any user without requiring administrator privileges.
· In this case, the script is run only by using the internal accessible APIs (which allow you to develop your script by using Groovy).
· When unchecked, if the script has operations that require approval, an administrator will have to provide them. This method is known as “Script approval.” By default, all Jenkins pipelines run in a Groovy sandbox.
· If the option is checked and unauthorized operations are used, the script will fail when run.
 [image:]

 [image:]

[image:]

[image:]

What to choice between two – Declarative (or) Scripted ?
· Scripted vs. declarative pipelines are different only in their programmatic approach.
· One uses a declarative programming model, while the other uses an imperative programming model.
· What about the choice between declarative vs. scripted pipelines for a new project?
· The answer to that question is most definitely the declarative pipeline.
· The development industry has largely moved toward a declarative programming model for CI/CD pipelines.
· Both GitHub Actions and GitLab CI support only YAML pipelines, which are very similar to declarative Jenkins pipelines.
· Furthermore, declarative pipelines are easier to maintain and they tend to have a lower learning curve.
· Though both these pipelines are based on the groovy DSL, the scripted pipeline uses stricter groovy based syntaxes because it was the first pipeline to be built on the groovy foundation.
· Since this Groovy script was not typically desirable to all the users, the declarative pipeline was introduced to offer a simpler and more optioned Groovy syntax.
· Declarative pipeline is a relatively new feature that supports the pipeline as code concept. It makes the pipeline code easier to read and write. This code is written in a Jenkinsfile which can be checked into a source control management system such as Git.
· Whereas, the scripted pipeline is a traditional way of writing the code. In this pipeline, the Jenkinsfile is written on the Jenkins UI instance.
· The declarative pipeline is defined within a block labelled ‘pipeline’ whereas the scripted pipeline is defined within a ‘node’
· The declarative syntax is the best approach to use when new CI/CD workflows are built.

Written by Vinod Sairam
The Database Administrator who helps to manage Enterprise Databases who develops Devops Engineering ideas to support Database tasks, Infrastructure tasks and to reach the right audience.
Assisted by Shanmugavelu. M
image6.png
pipeline {
agent any
stages {
stage('Build') {
steps {
// Commands to build the project
}
}
stage('Test') {
steps {
// Commands to run tests
}
}
stage('Deploy') {
steps {
// Commands to deploy the application
}

image7.png
node {
stage('Build') {
// Commands to build the project
}
stage('Test') {
// Commands to run tests
}
stage('Deploy’) {
// Commands to deploy the application
}

image8.jpeg
Declarative Scripted

pipeline { node {
agent any stage('Build’) {
stages {
stage('Build") { }
steps { stage('Test') {
} }
} stage(Deploy”) {
stage('Test’) {
steps { }
}
}
&
stage('Deploy”’) {
steps {
}
}
}

image9.png

image10.png
agent any

stages {
stage("Pullicode”) {
steps {
echo "Pull code from repository"
}
}
stage("Build") {
steps {
echo "Build your project and artifacts”
}
}
stage("Deploy”) {
steps {
echo “Deploy your application”
}
}

i ") £
steps ?

echo "Perform functional tests"

}
}
stage("Test:Performance”) {
steps {
echo "Perform performance tests”
}
}

image11.png
Dashboard Nodes

D o Nodes

& Clouds
s Name Architecture BNClock Free Disk Free Swap Free Temp Response
ifference Space Space Space Time
Build Queue v
(] Agent-linux_ ubuntu - Linux (amd64) 1.3 sec behind 37.29GB 3.81GB 37.29GB 19ms
No builds in the queue.
Windows 11
(] Built-In Node indows In sync 17.98 GB 427GB 17.98 GB oms

(amd64)

image12.png
Dashboard Nodes

[status

o

Delete Agent

Configure

Build History

Load Statistics

Script Console

Log

System Information

Agent-linux_ubuntu

Agent Agent-linux_ubuntu

Labels
Projects tied to Agent-linux_ubuntu

None

image13.png
Dashboard

=+ New item
82 People
& Build History

© Project Relationship

All

Name |

Last Success

image14.png
Dashboard

All

Enter an item name

@ Freestyle project
™ This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this
for something other than software build.

Orchestrates long-running activities that can span multiple build agents. Suitable for building pipelines (formerly known
and/or organizing complex activities that do not easily fit in free-style job type.

Multi-configuration project

"/ suitable for projects that need a large number of different configurations, such as testing on multiple environmen

plat
builds, etc.

Folder

Creates a container th

B

tores nested items in it. Useful for grouping things together. Unlike view, which is just a filter, a
mespace, so you can have multiple things of the same name as long as they are in different folders

- ich Pipeline

image15.png
Dashboard > pipeline_job_declarative > Configuration

Configure General
£33 'General Description
& Advanced Project Options This is the pipeline job which is of declarative type job

& Pipeline

Plain text Preview
Discard old builds ?
Do not allow concurrent builds
Do not allow the pipeline to resume if the controller restarts
GitHub project
Pipeline speed/durability override ?

Precerve staches from comnleted huiil

image16.png
Dashboard > pipeline_job_declarative > Configuration

. Definition
Configure

€3 General

2 Advanced Project Options

2
o
@ pipeliner a- e ot ¢
s- sceps
6 Scho - This s the build step
7 = “hostnane
s o date
o)
10)
1~ Stage (‘test: incegration-a-quality’) (
12- Sceps {
) echo * This 15 the integration testing step
1)
15)
16+ Stoge (‘test: funcetonal’) (
7 steps {

Use Groovy Sandbox 2

Pipeline Syntax

image17.png
Dashboard pipeline_job_declarative

B status

</> Changes
(> Build Now

€33 Configure

W Delete Pipeline

Q_ Full Stage View

© pipeline_job_declarative

This is the pipeline job which is of declarative type job

Stage View

image18.png
Dashboard -~ > pipeline_job_declarative > #5

8

Status

<[> Changes

Console Output

B View as plain text

o
w

Edit Build Information

Delete build '#5’

@ Restart from Stage

4

i

v 0

Replay
Pipeline Steps
Workspaces
Previous Build

Next Build

@ Console Output

Started by user Shanmugavelu
[Pipeline] Start of Pipeline
[Pipeline] node

[Pipeline] {

[Pipeline] stage

[Pipeline] { (build)

[Pipeline] echo

This is the build step

[Pipeline] sh

+ hostname
linux-slave-Hyper-V-UEFI-Release-v4-1
[Pipeline] sh

+ date

Fri Dec 22 08:22:38 AM IST 2023
[Pipeline]

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (test: integration-&quality)
[Pipeline] echo

This is the integration testing step
[Pipeline] }

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (test: functional)

[Pipeline] echo

This is the functional testing step

image19.png
Dashboard Nodes Built-In Node

Status Built-In Node

Configure
9 This is the Jenkins controller's built-in node. Builds running on this node will execute on the same system and as the same |

special jobs performing backups, but in general you should run builds on agents. Learn more about distributed builds.
Build History

o
©
=]
~

Load Statistics

Labels
Script Console —

Projects tied to Built-In Node

B Executor Status A~

built-in node (0 of 2 executors busy) None

image20.png
. Definition
Configure

Pipeline script
€33 General

/% Advanced Project Options 1~ pipeline {
2 agent {/label "master’ }
3~ stages {
@ Pipeline 4- stage (*build’) {
5 steps {
6 echo " This is the build step
7 3
8 }
9~ stage ("test: integration-&-quality’) {
10~ steps {
11 echo " This is the integration testing step
12 }
13 ¥
14~ stage ("test: functional’) {
15+ steps {
16 echo " This is the functional testing step
17 1

Script 2

Use Groovy Sandbox 7

Pipeline Syntax

image21.png
Dashboard > pipeline_job_declarative

B status © pipeline_job_declarative

</> Changes This is the pipeline job which is of declarative type job

[> 1-Build Now

€33 Configure

W Delete Pipeline Stage View

Q_ Full Stage View

test:
test: load-&-
2 Rename build integration-&- test: functional esm:: approval deploy:prod
quality 'ty
@ Pipeline Syntax
Average stage times: 543ms 89ms 70ms 96ms 80ms T7ms
(Average full run time: ~25) = - - - -
<> Build History trend v o
Jan 04 57ms 47ms 51ms 47ms 63ms 57ms
Q Filter builds... / 2413

@# Jan 4, 2024, 12:13 AM P10) (1 1 1 1 1

image22.png
Dashboard > pipeline_job_declarative > #11

B status @ Build #11 (Jan 4, 2024, 12:13:26 AM)

<[> Changes

Edit Build Information O Started by user Shanmugavelu
Delete build 411

Restart from Stage

o
w
®
&

Replay

i

Pipeline Steps

a

Workspaces

& Previous Build

image23.png
Dashboard > pipeline_job_declarative > #11

B status

<[> Changes

Console Output
B View as plain text

4 Edit Build Information

W Delete build #11°

@ Restart from Stage

/> Replay

22 Pipeline Steps

B Workspaces
& Previous Build

@ Console Output

Started by user Shanmugavelu
[Pipeline] Start of Pipeline
[Pipeline] node

Running on Jenkins in C:\Usens\Shannugavelu\:jenkins\uorkspace\pipeline job_declarative

[Pipeline] {

[Pipeline] stage

[Pipeline] { (build)

[Pipeline] echo

This is the build step

[Pipeline] }

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (test: integration-&-quality)
[Pipeline] echo

This is the integration testing step
[Pipeline] }

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (test: functional)
[Pipeline] echo

This is the functional testing step
[Pipeline] }

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (test: load-&security)
[Pipeline] echo

image24.png
Dashboard > pipeline_job_scripted > Configuration

Configure General

& General Description
J° Advanced Project Options This s the pipeline script which is of type Scripted,
@ Pipeline

Plain text Preview
Discard old builds 7
Do not allow concurrent builds
Do not allow the pipeline to resume if the controller restarts
GitHub project
Pipeline speed/durability override 7
Preserve stashes from completed builds 2
This project is parameterized 2

Throttle builds 2

image25.png
Configure

€3 General

2 Advanced Project Options

@ Pipeline

Advanced v

Pipeline

Definition

Pipeline script

Script 7
;' *{)
3 echo " This is the build step "
4 >
5o ﬁ> {
6 echo " This is the integration testing step "
;
o o,
9 echo " This is the functional testing step -
10 }
- st tessoaang securioy) (
12 echo " This is ting step "
1
14+ al') {
15 echo " This is the Approval step for deployment "
18
D oo
18 echo " This is the Deployment Step *
= i

Use Groovy Sandbox 7

Pipeline Syntax

image26.png
Dashboard > pipeline_job_scripted

B status

<[> Changes
Build Now
Configure

Delete Pipeline

Rename

Pipeline Syntax

>
@
w
Q. Full Stage View
7
@

Build History

Q Filter builds...

on

| Dec 22,2023, 7:53 AM

trend v

@ pipeline_job_scripted

This is the pipeline script which is of type Scripted.

Stage View

Average stage times:
(Average full run time: ~713ms)

o

Dec22

o753

build

52ms

54ms

test:
Integration
and Quality

51ms

test:funtional

48ms

67ms

test:Load and
Security

38ms

Approval

42ms

Deployment

55ms

2

image27.png
Dashboard > pipeline job scripted > #3

B status @ Console Output

<[> Changes
Started by user Shanmugavelu
(] console Output [Pipeline] Start of Pipeline
[Pipeline] node
[View as plain text Running on Agent-linux_ubuntu in /home/jenkins/jenkins-agent/workspace/pipeline_job_scripted
[Pipeline] {
4 Edit Build Information [Pipeline] stage
[Pipeline] { (build)
W Delete build ‘#3° [Pipeline] echo

This is the build step

2> Replay [Pipeline] }

[Pipeline] // stage
33 Pipeline Steps [Pipeline] stage

[Pipeline] { (test: Integration and Quality)
B Workspaces [Pipeline] echo

This is the integration testing step
& Previous Build [Pipeline] }
[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (test:funtional)
[Pipeline] echo

This is the functional testing step
[Pipeline] }

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (test:Load and Security)
[Pipeline] echo

This is the Load testing step
[Pipeline] }

image28.png
Dashboard > pipeline_job_scripted

> #3

[Pipeline] // stage
[Pipeline] stage

[Pipeline] { (test:funtional)
[Pipeline] echo

This is the functional testing step
[Pipeline] }

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (test:load and Security)
[Pipeline] echo

This is the Load testing step
[Pipeline] }

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (Approval)

[Pipeline] echo

This is the Approval step for deployment
[Pipeline] }

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (Deployment)

[Pipeline] echo

This is the Deployment Step
[Pipeline] }

[Pipeline] // stage

[Pipeline] }

[Pipeline] // node

[Pipeline] End of Pipeline

 Finished: SUCCESS

image29.png
< U

(J hitps//github.com/mshanU181/java-sample-code

= O mshan0181 / java-sample-code

<> Code

© lIssues {9 Pullrequests (® Actions

3 java-sample-code Pubiic

YYour master branch isn't protected

Protect this branch from force pushing or deletion, or require status checks before merging. View

documentation.

% master ~ ¥ 3Branches © 0 Tags

£ mshan0181 sample code for declarative

[Helloworld java
0 Jenkinsfile

[READMEmd

[README

[Projects 0T Wik

Q Type (7 to search
@ Security |~ Insights #8 Settings
2 Pin

® Unwatch 1

Protect this branch x

Q Gotote o ndane -
Local Codespaces
(3 Clone ®

commit at 11.33 AV

HTTPS SSH GitHub CLI

sample code for dec

https: //github. con/mshan@181/java-sample-code.¢ (0

Use Git or checkout with SVN using the web URL.

Java sample code u|

(X Open with GitHub Desktop

[Download ZIP

image30.png
= O mshan0181 / java-sample-code

<> Code (@ lIssues {7 Pull requests
[D Files

master - + Q
Q Gotofile t

[Helloworld java
O Jenkinsfile
[READMEmd

® Actions

[Projects 0T Wik

java-sample-code / Jenkinsfile (5

£ mshan0181 sample code for declarative

Code

@ Security

Q Type

|~ Insights €3 Settings

Blame 39 lines (37 loc) - 922 Bytes @3 Code 55% faster with GitHub Copilot
1 pipeline {
2 agent { label 'Agent-linux_ubuntu’ }
3 stages {
4 stage ("build’) {
5 steps {
3 echo " This is the build step "
7 sh "hostname®
8 sh ‘date "
9 ¥
10 }
1 stage (“test: integration-&-quality’) {
12 steps {
13 echo " This is the integration testing step
14 }
15 }
16 stage (“test: functional') {
17 steps {
18 echo " This is the functional testing step
19 }
2 }
21 stage (“test: load-&security’) {
2 steps {

3

echo ™ Thic ic the load tecting <tep

to search

image31.png
< O (3 https://github.com/mshan0181/java-sample-code/blob/master/Jenkinsfile

= O mshan0181 / java-sample-code Q Type (7 to search

<> Code (@ lIssues {7 Pullrequests (® Actions [Projects [0 Wiki @ Security |~ Insights &3 Settings

[0 Files java-sample-code /Jenkinsfile (&

¥ master e 3 mshan0181 sample code for declarative

Q Gotofile t

\ Code ‘ Blame 39 lines (37 loc) - 922 Bytes & Code 55% faster with GitHub Copilot
[Helloworld java e

D Jenkinsfile L pipeline {
2 agent { label 'Agent-linux_ubuntu' }

[READMEmd 3 stages {
4 stage ('build’) {
5 steps {
6 echo " This is the build step "
7 sh “hostname"
8 sh ‘date "
9 }
10 }
11 stage ('test: integration-&-quality') {
12 steps {
13 echo " This is the integration testing step "
14 }
15 }
16 stage ("test: functional’) {
17 steps {
18 echo " This is the functional testing step
19 }
20 }
21 stage ("test: load-&-security’) {
22 steps {

23 echo " This is the Load testing step

image32.png
€ > C @ localhost:8080/job/pipeline_using jenkinsfile/configure

Dashboard > pipeline_using jenkinsfile > Configuration

Configure Discard old builds 7

Do not allow concurrent builds

€83 General

&% Advanced Project Options Do not allow the pipeline to resume if the controller restarts

@& Pipeline GitHub project

Project url 2

https://github.com/mshan0181/java-sample-code.git

Advanced Vv

Pipeline speed/durability override 2
Preserve stashes from completed builds 2
This project is parameterized 2

Throttle builds 2

Build Triggers

image33.png
Configure

@ General
Pyrm—

@ Pipeine.

image34.png
Dashboard > pipeline_using_jenkinsfile

B status

</> Changes

D> Build Now

€33 Configure

Delete Pipeline

Full Stage View

Rename

w
Q
) GitHub
z
@

Pipeline Syntax

Build History

trend v

pipeline_using_jenkinsfile

Pipeline job using jenkinsfile

Stage View

No data available. This Pipeline has not yet run.

Permalinks

image35.png
Dashboard > pipeline_us

B status @ Build #7 (Jan 4, 2024, 1:19:49 AM)
<I> Changes

Console Output

Started by user Shanmugavelu
[Edit Build Information N

Revision: c1 20267
Repository: https://github.com/mshan0181/javar-sample-code.git

Delete build 7

i)
@ Gt Build Data .
@ Restartfom Stage
2 Replay

Z Pipeline Steps

B3 Workspaces
P

Previous Build

image36.png
Dashboard pipeline using jenkinsfile

B stotus ® pipeline_using_jenkinsfile
/> Changes
D suid Now
@ Configure

Pipeline job nsfile

image37.png
Dashboard > pipeline.using jenkinsfile

B sttus
P> Changes
Build Now
Configure
Delete Pipeline

Rename

>
@
w
Q_ Ful Stage View
z
@

Pipeline Syntax

& Build History
Q_ Filter builds.

2004, 119 M

184

trend v

® pipeline_using_jenkinsfile

Pipeline job using jenkinsfile

Stage View
Dectaraive:

Checkout SCM

Average sage times: 1
(Average full run time: ~17s) S

o
(R T
.
15s

build

898ms

1s

test
integration-&-
quality

7oms

test: functional

Stms

test: load-&-
security

S5ms

approval

S1ms

deploy:prod

S4ms

image38.png
Dashboard > pipeline_using jenkinsfile

B sus
P> Changes

() Console Output

B Viewas plintert

o
w
©®
]
&

Edit Build Information

Delete build 47

Git Build Data

Restart from Stage

Replay

Pipline Steps
3 Workspaces

& Previous Build

© Console Output

started by user shanmugavelu

Checking out git https://github.con/nshane1s1/ java-sample-code.git into C:\Users\shanmugavelu\. jenkins\uorkspace\pipeline_using_jenkinsfilegscript\37b85895218755760c527CF 1317b0c20265 3¢ Fa303276507262046C5691¢6 to read Jenkinsfile

Selected Git installation does not exist. Using Default
The recommended git tool is: NONE
Wo credentials specified

> Ci\Progran Files (x85)\Git\cd\git.exe rev-parse -resolve-git-dir C:\Users\shanmugavelu\. jenkins\uorkspace\pipeline_using jenkinsfile@script|\37bosssa216755760c8527C F1a17b0c 2026537 F2a303276307202046C569105 . git # timeou

Fetching changes from the remote Git repository

> Ci\Progran Files (x86)\Git\cnd\git.exe config remote.origin.url https://github. con/mshane151/java-sample-code. it # timeou
Fetching upstrean changes From https: //github.con/nshane1s1/java-sanple-code.git

> Co\progran Files (x55)\Git\cad\git.exe
> git --version # 'git version 2.36.0.uindows.1"

version # tineout

> Ci\Program Files (x85)\Git\cnd\git.exe fetch --tags --force --progress -- ttps://github.con/mshane1s1/Java-sample-code.git +refs/heads/*:refs/remotes/origin/® # tineout=1o

> Ci\Program Files (x85)\Git\cnd\git.exe rev-parse "refs/remotes/origin/master~{commit}” # tineou
Checking out Revision c157b29255a535ea37206fbS2bEo8acedfa5a87 (refs/renotes/origin/master)

> Ci\Progran Files (xg5)\Git\cud\git.exe config core.sparsecheckout # timeout-18

> Co\Progran Files (x85)\Git\cnd\git.oxe checkout f CIS7¢62525535352337205 705206353000 25287 # timeout=1
comnit message: "sample code for declarative”

> Co\Progran Files (x85)\Git\cud\git.exe rev-1ist -no-uslk C1577b2925535356537305 b 2bESSaeedf 2967 # timeout=1o
[Pipeline] Start of Pipeline

[pipeline]

Running on Agent-Linux_ubunitu in /home/Jenkins/Jenkins-agent/workspace/pipeline_using_jenkinsfile
[pipeline]

[pipeline] stage

[Pipeline] { (Declaratiy

[pipeline] checkout
Selected Git installation does not exist. Using Default

The recommended git tool is: NONE

Wo credentials specified

Fetching changes from the remote Git repository

> Jusr/bin/git rev-parse --resolve-git-dir /home/Jenkins/Jenkins-agent/workspace/pipeline_using jenkinsfile/.git # timeout-1o
> Jusr/bin/git config remote.origin.url https://github. con/nshane1s1/Java-sample-code.it # timeout=10

Fetching upstrean changes from https: //github.con/nshane1s1/java-sanple-code.git

> fusr/bin/git --version # timeout-10

> git --version # 'git version 2.40.1°

> fusr/bin/git fetch

Comnit message!
[pipeline] }
[pipeline]
[Pipeline] withem

ample cose for declarative”

tags -force --progress -- https://github.con/mshane151/java-sample-code.git +refs/heads/*:refs/renotes/origin/* # timeou

image39.png
dashboard > pipeline_using jenkinsfile > #7

LPipetine] ecno
This 1s the build step
[pipeline] sh

+ hostnane
Linux-ubuntu-server
[pipeline] sh
+ date

Thu 3en 4 e
[pipeline] }
[pipeline] // stage

[Pipeline] stage

[Pipeline] { (test: integration-&-quality)
[pipeline] echo

0:601 AN IST 2024

|

[pipeline] }

[pipeline] // stage

[Pipeline] stage

[pipeline] { (test: functional)
Pipeline] echo

|

=
[pipeline] }

[Pipeline] // stage

[Pipeline] stage

[pipeline] { (test: load-&-security)
[pipeline] echo

[pipeline] }

[Pipeline] // stage

[pipeline] stage

[Pipeline] { (approval)

[pipeline] echo

nt

[pipeline] }

[pipeline] // stage
[Pipeline] stage
[Pipeline] { (deploy:prod)
[pipeline] echo

|

[pipeline] }

[pipeline] // stage
[pipeline] }

[pipeline] // witheny
[pipeline] }

[pipeline] // node
[pipeline] nd of Pipeline

I

image40.png
Dashboard > pipeline_job_declarative > #11

B status

<[> Changes

Console Output

4 Edit Build Information
W Delete build #11°
@ Restart from Stage
2> Replay

32 'pipeline Steps

B Workspaces

& Previous Build

> Pipeline Steps

Start of Pipeline - (0.74 sec in block)

node - (0.48 sec in block)

node block - (0.45 sec in block)

stage - (73 ms in block)

stage block (build) - (26 ms in block)

echo - (<1msin self)

stage - (63 ms in block)

stage block (test: integration-&-quality) - (27 ms in block)

echo - (12 ms in self)

stage - (67 ms in block)

stage block (test: functional) - (35 ms in block)

echo - (16 ms in self)

stage - (63 ms in block)

master

build

This is the build step

test: integration-&-quality

This is the integration testing step

test: functional

This is the functional testing step

test: load-&-security

®®®®®®®®®®®®®‘

image41.png
Dashboard > pipeline_job_declarative > Pipeline Syntax

Back Overview

Snippet Generator This Snippet Generator will help you learm the Pipeline Script code which can be used to define various steps. Pick step you are interested in from the list, configure it, click and you
will see a Pipeline Script statement that would call the step with that configuration. You may copy and paste the whole statement into your script, or pick up just the options you care about. (Most parameters

Declarative Directive Generator are optional and can be omitted in your script, leaving them at default values)

Declarative Online Documentation
Steps
Steps Reference
Sample Step

Global Variables Reference
rchive the artifacts

archiveArtifacts:

Online Documentation

archiveArtifacts 2
Examples Reference

IntelliJ IDEA GDSL Files to archive 7

Q00 0O & & >

Advanced v

image42.png
OOdGc o»HEHE©->GCGCG6CD®D®DG G & @G Hewsd 26=00€¢«H e ez e + - o X

C @ localhost:8080/job/pipeline_job_declarative/pipeline-syntax/ QU a = :

@ Shanmugavelu v

Dashboard > pipeline_job_declarative > Pipeline Syntax
Back Overview
Snippet Generator This Snippet Generator will help you learn the Pipeline Script code which can be used to define various steps. Pick a step you are interested in from the list, configure it click Generate Pipeline Script, and you
will see a Pipeline Script statement that would call the step with that configuration. You may copy and paste the whole statement into your script, or pick up just the options you care about. (Most parameters
Declarative Directive Generator are optional and can be omitted in your script, leaving them at default values)

Declarative Online Documentation
Steps
Steps Reference

Sample Step

Global Variables Reference

archiveArtifacts: Archive the artifacts
Online Documentation archiveArtifacts: Archive the artifacts

bat: Windows Batch Script

Examples Reference build: Build a job
catchError: Catch error and set build result to failure
Intelli) IDEA GDSL checkout: Check out from version control

Q00 0O & & >

cleanWs: Delete workspace when build is done
deleteDir: Recursively delete the current directory from the workspace

dir: Change current directory

echo: Print Message

emailext: Extended Email

emailextrecipients: Bxtended Email Recipients

error: Error signal

fileExists: Verify if file exists in workspace

findBuildScans: Find published build scans

fingerprint: Record fingerprints of files to track usage

git: Git

input: Wait for interactive input

isUnix: Checks if running on a Unix-like node

junit: Archive JUnit-formatted test results

library: Load a library on the fly -

“

Osearch | g d f.! = °3° - 0 @ ; E N v ‘i @ e (‘7 ﬁ > raLe @ E\':IG ol A 04—01—%:;

o EEE
~D Mostly cloudy

image43.png
Dashboard > pipeline job_declarative

»
c]
e
@
@
@
@
@
@

Back

Snippet Generator

Declarative Directive Generator

Declarative Online Documentation

Steps Reference

Global Variables Reference

Online Documentation

Examples Reference

IntellJ IDEA GDSL

Pipeline Syntax

Overview

This Snippet Generator will help you learn the P 5. P
wil nfiguration. You may copy and paste the
are optional and can be omitted in your scipt leaving them at default values)

which can be used to define various st

astepyou are in
to your sript, or pick up just the options y

rested in from the lst, configure

ee 2 Pipeline Script statement that would cal the step with that c

ole statement i

Steps

Sample Step

build: Build a job.
catchror: Catch error and set buid result to falure.
checkout: Check out from version control
cleanWs: Delete workspace when build is done
deleteDir: Recursively delete the current directory from the workspace
dir: Change current directory
ge
emailext: Extended Email
emailextrecipients: Extended Email Recipients
error: Eror signal
fileists: Verlfy i ile exists in workspace
findBuildScans: Find published build scans
fingerprint: Record fingerprints of files to track usage
git:Git
input: Wait for nteractive input
sUnix: Checks if running on a Unix-like node
junit: Archive JUnit-formated test results
library: Load 2 ibrary on the fly

image44.png
(S COORORORCORCIN

Snippet Generator

Declarative Directive Generator

Declarative Online Documentation

Steps Reference

Global Variables Reference

Online Documentation

Examples Reference

Intelli) IDEA GDSL

This Snippet Generator will help you learn the Pipeline Script code which can be used to define various steps. Pick a
will see a Pipeline Script statement that would call the step with that configuration. You may copy and paste the whol:
are optional and can be omitted in your script, leaving them at default values)

Steps

Sample Step

“bat: Windows Batch Script
bat

Batch Script 2

Advanced v

image45.png
Definition

Groovy CPS DSL

Seript gcho(*Hello World®);

@ Use Groovy Sandbox

image1.png

image46.png
Configure .
Pipeline

£83 General Definition

% Advanced Project Options Pipeline script

@ Pipeline

Script 2

1- pipeline {

2 agent { label 'master’ }
3+ stages {

e stage ("build’) {
5+ steps {

6 echo "
7 }

8

o Stage (“test: integration-&-quality’) {

10~ steps {

1 echo * This is the integration testing step
12)

13 }

14~ Stage (“test: functional’) {

15+ steps {

16 echo " This is the functional testing step
17)

18

0= Srace ('racr lead-focsruniru'y 1

This is the build step "

The script s not approved and will not be approved on save. Either modify the script to match an already approved scrip

Configuration page after save, or approve this version of the script. Approvesseript

Pipeline Syntax

image47.png
<« C @ localhost:8080/seriptApproval/

Dashboard > ScriptApproval

+ Newitem [iapprove |/ Deny | Groovy script from shan
82 People

Build History

e @

Project Relationship

Rl

Check File Fingerprint -
You can also remove all previous script approvals: | Clear Approvals

Manage Jenkins
No pending signature approvals.

a e

My Views
Signatures already

pproved

Build Queue v

No builds in the queue.

Build Executor Status ~

built-in node + 3 agents (0 of 4 executors busy)

Signatures already approved assuming permission check

image48.png
¢ > C @ localhost8080/job/pipeline_job_declarative/configure

Dashboard -

Configure

£83 General

> pipeline job_declarative > Configuration

Pipeline

Definition

Pipeline script

&2 Advanced Project Options

@ Pipeline

Script 2

1- pipeline {
2 agent { label 'master’ }
3. stages {

a- stage ("build’) {
5+ steps {

6 echo "
7 }
8

o

10~

1

12)

13

14~

15~

16

17)

18

This is the build step "

Stage (“test: integration-&-quality’) {
steps {

echo * This is the integration testing step

1
Stage (“test: functional’) {
steps {

echo " This is the functional testing step "

Srace ('racr lead-focsruniru'y 1

Use Groovy Sandbox 2

Pipeline Syntax

Apply

image2.png
OPERATE
MONITOR

AN
\
\
b
i
i
i
!
/
/

on

=

Hu

=
<
@
=

Integration

Q N

gradl,

image3.png
Jenkins Pipeline

Checkout Build Test Staging Produc
Jenkins

image4.png
Commit Build Deploy Dev/QA...

r-um-u- O O

———» Continuous Integration/Delivery ———»

Production

image5.png
N N 7Y

@ (2

