Declarative and Scripted pipeline job in Jenkins -PART 1

What is Pipeline in Devops?
· A pipeline is a collection of jobs that brings the software from version control into the hands of the end users by using automation tools.
·  It is a feature used to incorporate continuous delivery in our software development workflow.
· There are various pipeline tools in the market and Jenkins is one among them. 
· Example: Bamboo, Hudson etc.
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What is a Jenkins pipeline?
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· They represent multiple Jenkins jobs as one whole workflow in the form of a pipeline.
· What do these pipelines do? These pipelines are a collection of Jenkins jobs which trigger each other in a specified sequence.
Jenkins Pipeline – Core element of Continuous Integration/Continuous Delivery (CICD)                      
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  How it works?
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· A Jenkins pipeline, every job has some sort of dependency – with at least with one or more events
· These pipelines are a core element of a CI/CD (Continuous Integration/Continuous Delivery) system
· These pipelines enable development teams to automate the building, testing, and deployment of their applications.

Types of Pipeline jobs:
There are two types of syntax used for defining your Jenkins pipeline jobs
1. Declarative
2. Scripted
Declarative pipeline - Syntax 
Declarative:
The declarative pipeline provides a more structured and simpler syntax for defining pipelines. It is designed to be easy to read and understand, especially for those new to Jenkins and CI/CD concepts.
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 Scripted pipeline - Syntax 
Scripted:
The scripted pipeline uses a more flexible and complex scripting syntax, allowing for advanced customization and conditional logic. It provides more control and is suitable for complex build processes.
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Pipeline Syntax differences –Declarative vs Scripted 
Pipeline syntax differences
· Declarative pipelines always begin with the word pipeline. 
· Scripted pipelines, on the other hand, always begin with the word node.
· Declarative pipelines break down stages into individual stages that can contain multiple steps. 
· Scripted pipelines use Groovy code and references to the Jenkins pipeline DSL within the stage elements without the need for steps.
· These are the key differences that allow a developer to quickly differentiate between a scripted pipeline and a declarative pipeline.
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Jenkins Pipeline Job( code)  Concepts
Pipeline concepts
Pipeline
· This is a user defined block which contains all the processes such as build, test, deploy, etc. 
· It is a collection of all the stages in a Jenkinsfile. 
· All the stages and steps are defined within this block. 
· It is the key block for a declarative pipeline syntax.
Node
· A node is a machine that executes an entire workflow. 
· It is a key part of the scripted pipeline syntax.
· There are various mandatory sections which are common to both the declarative and scripted pipelines, such as stages, agent and steps that must be defined within the pipeline. 
Agent
· An agent is a directive that can run multiple builds with only one instance of Jenkins. 
· This feature helps to distribute the workload to different agents and execute several projects within a single Jenkins instance. 
· It instructs Jenkins to allocate an executor for the builds.
· A single agent can be specified for an entire pipeline or specific agents can be allotted to execute each stage within a pipeline. Few of the parameters used with agents are:
                        Any
                        Runs the pipeline/ stage on any available agent.
                        None
                       This parameter is applied at the root of the pipeline and it indicates that there is no global agent for the entire pipeline
                       And each stage must specify its own agent.
                        Label
                        Executes the pipeline/stage on the labelled agent.
                        Docker
                         This parameter uses docker container as an execution environment for the pipeline or a specific stage. 
                         
Stages
· This block contains all the work that needs to be carried out. 
· The work is specified in the form of stages. 
· There can be more than one stage within this directive.
·  Each stage performs a specific task.
Steps
· A series of steps can be defined within a stage block. 
· These steps are carried out in sequence to execute a stage. 
· There must be at least one step within a steps directive. 

Stage Section in Jenkins Pipeline Build
The “stage” section is required to segregate the work category as listed inline:
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A specified pipeline will consist of several steps that can be grouped in several stages. For example:
	Stage 1
	Pull code from repository
	Pull Code CheckIn

	Stage 2
	Build your project and artifacts
	Build Project/Artifacts of Project

	Stage 3
	Deploy your application
	Deploy from centralized repo to specified environment

	Stage 4
	Perform functional tests
	QA performance will happen

	Stage 5
	Perform performance tests
	·       (UI and performance can test.


Where to write or place/run ?the pipeline code ? 
We can define or write pipeline code (Scripted and Declarative) either in
1) In the web UI (Jenkins UI)
2) In Jenkins file (in Repo)

Creating a  Declarative Pipeline job (code in  Jenkins web UI):
Checking the Master and Slave node availability 
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A) Create the pipeline job and run from the Slave node (Agent node)  

                Check  the Label for the Agent  node
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                                   Configure the Jenkins job for declarative pipeline ->
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                           Build the Job ->
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                            Check  the Job output->
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B) Create the declarative pipeline and run from the Master (Built-in node)  
                        Check  the Label for the master node
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                          Configure the Jenkins job for declarative pipeline ->
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                        Build the Job ->
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                           Check  the Job output->
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Declarative and Scripted pipeline job in Jenkins -PART 2

Creating a Scripted Pipeline job (code in Jenkins web UI):
                          Configure the Jenkins job for scripted pipeline ->
             [image: ]
                          Write the code in  the Jenkins Web UI ->
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                          Build the Job ->
                          [image: ]
         
                            Check  the Job output->
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Creating a Pipeline job using Jenkins file –(code using  Jenkins file in Repo):
                                Copy the repository URL GITHUB ->
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                                           Create the Jenkins file ( with code) in GITHUB Repo ->
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                                       Copy the Jenkins file URL from GITHUB->
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                                       Configure the Jenkins job with Jenkinsfile option ->
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                               Build the Jenkins job ->                                                                      
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                               Check the job output   ->                                                                      
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Option ->Checking Pipeline Steps -Individual steps 
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Snipper Generator – Help/guide To generate Pipeline script 
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Sandbox Security option in Jenkins
    This is option is for Restricted Access
· Jenkins limits the execution of any Groovy script by providing a sandbox. 
· The option “Use Groovy Sandbox,” shown below, is available in the Pipeline tab, and it allows the scripts to be run by any user without requiring administrator privileges.
·  In this case, the script is run only by using the internal accessible APIs (which allow you to develop your script by using Groovy).
· When unchecked, if the script has operations that require approval, an administrator will have to provide them. This method is known as “Script approval.” By default, all Jenkins pipelines run in a Groovy sandbox.
· If the option is checked and unauthorized operations are used, the script will fail when run.
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What to choice between two – Declarative (or) Scripted ?
· Scripted vs. declarative pipelines are different only in their programmatic approach. 
· One uses a declarative programming model, while the other uses an imperative programming model.
· What about the choice between declarative vs. scripted pipelines for a new project? 
· The answer to that question is most definitely the declarative pipeline.
· The development industry has largely moved toward a declarative programming model for CI/CD pipelines. 
· Both GitHub Actions and GitLab CI support only YAML pipelines, which are very similar to declarative Jenkins pipelines.
· Furthermore, declarative pipelines are easier to maintain and they tend to have a lower learning curve. 
· Though both these pipelines are based on the groovy DSL, the scripted pipeline uses stricter groovy based syntaxes because it was the first pipeline to be built on the groovy foundation.
· Since this Groovy script was not typically desirable to all the users, the declarative pipeline was introduced to offer a simpler and more optioned Groovy syntax.
· Declarative pipeline is a relatively new feature that supports the pipeline as code concept. It makes the pipeline code easier to read and write. This code is written in a Jenkinsfile which can be checked into a source control management system such as Git.
· Whereas, the scripted pipeline is a traditional way of writing the code. In this pipeline, the Jenkinsfile is written on the Jenkins UI instance. 
· The declarative pipeline is defined within a block labelled ‘pipeline’ whereas the scripted pipeline is defined within a ‘node’
· The declarative syntax is the best approach to use when new CI/CD workflows are built.
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pipeline {
agent any
stages {
stage('Build') {
steps {
// Commands to build the project
}
}
stage('Test') {
steps {
// Commands to run tests
}
}
stage('Deploy') {
steps {
// Commands to deploy the application
}
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node {
stage('Build') {
// Commands to build the project
}
stage('Test') {
// Commands to run tests
}
stage('Deploy’) {
// Commands to deploy the application
}
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agent any

stages {
stage("Pullicode”) {
steps {
echo "Pull code from repository"
}
}
stage("Build") {
steps {
echo "Build your project and artifacts”
}
}
stage("Deploy”) {
steps {
echo “Deploy your application”
}
}

i ") £
steps ?

echo "Perform functional tests"

}
}
stage("Test:Performance”) {
steps {
echo "Perform performance tests”
}
}
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> Ci\Program Files (x85)\Git\cnd\git.exe fetch --tags --force --progress -- ttps://github.con/mshane1s1/Java-sample-code.git +refs/heads/*:refs/remotes/origin/® # tineout=1o

> Ci\Program Files (x85)\Git\cnd\git.exe rev-parse "refs/remotes/origin/master~{commit}” # tineou
Checking out Revision c157b29255a535ea37206fbS2bEo8acedfa5a87 (refs/renotes/origin/master)

> Ci\Progran Files (xg5)\Git\cud\git.exe config core.sparsecheckout # timeout-18

> Co\Progran Files (x85)\Git\cnd\git.oxe checkout f CIS7¢62525535352337205 705206353000 25287 # timeout=1
comnit message: "sample code for declarative”

> Co\Progran Files (x85)\Git\cud\git.exe rev-1ist -no-uslk C1577b2925535356537305 b 2bESSaeedf 2967 # timeout=1o
[Pipeline] Start of Pipeline

[pipeline]

Running on Agent-Linux_ubunitu in /home/Jenkins/Jenkins-agent/workspace/pipeline_using_jenkinsfile
[pipeline]

[pipeline] stage

[Pipeline] { (Declaratiy

[pipeline] checkout
Selected Git installation does not exist. Using Default

The recommended git tool is: NONE

Wo credentials specified

Fetching changes from the remote Git repository

> Jusr/bin/git rev-parse --resolve-git-dir /home/Jenkins/Jenkins-agent/workspace/pipeline_using jenkinsfile/.git # timeout-1o
> Jusr/bin/git config remote.origin.url https://github. con/nshane1s1/Java-sample-code.it # timeout=10

Fetching upstrean changes from https: //github.con/nshane1s1/java-sanple-code.git

> fusr/bin/git --version # timeout-10

> git --version # 'git version 2.40.1°

> fusr/bin/git fetch

Comnit message!
[pipeline] }
[pipeline]
[Pipeline] withem

ample cose for declarative”

tags -force --progress -- https://github.con/mshane151/java-sample-code.git +refs/heads/*:refs/renotes/origin/* # timeou
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[pipeline] }
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[Pipeline] stage
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[pipeline] }
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[Pipeline] stage
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@ Pipeline

Script 2
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3+ stages {
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7 }

8

o Stage (“test: integration-&-quality’) {

10~ steps {

1 echo * This is the integration testing step
12 )

13 }

14~ Stage (“test: functional’) {

15+ steps {

16 echo " This is the functional testing step
17 )

18

0= Srace ('racr lead-focsruniru'y 1

This is the build step "

The script s not approved and will not be approved on save. Either modify the script to match an already approved scrip

Configuration page after save, or approve this version of the script.  Approvesseript

Pipeline Syntax




image47.png
<« C @ localhost:8080/seriptApproval/

Dashboard > ScriptApproval

+ Newitem [iapprove |/ Deny | Groovy script from shan
82 People

Build History

e @

Project Relationship

Rl

Check File Fingerprint -
You can also remove all previous script approvals: | Clear Approvals

Manage Jenkins
No pending signature approvals.

a e

My Views
Signatures already

pproved

Build Queue v

No builds in the queue.

Build Executor Status ~

built-in node + 3 agents (0 of 4 executors busy)

Signatures already approved assuming permission check





image48.png
¢ > C @ localhost8080/job/pipeline_job_declarative/configure

Dashboard -

Configure

£83 General

> pipeline job_declarative > Configuration

Pipeline

Definition

Pipeline script

&2 Advanced Project Options
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