Creating Docker Container using Dockerfile :

Use Case of Docker:
· Consider a team working on a Java application. Various groups are involved in the Software Development lifecycle: designing, development, testing, production, deployment, etc.

Step 1: The developer will create an environment that includes a Tomcat server. 
Step 2:  The tester must test the application after it has been developed. The tester will now create a new Tomcat environment to test the application from scratch. 
Step 3: The application will be deployed to the production server when the testing is completed. Again, Tomcat must be installed in the production environment to host the Java application. 

· The same Tomcat environment setup is done three times. While various teams are engaged in launching the application
· To overcome this problem, we use Docker. 
· In Docker, if we can create an image that contains information about required packages, say Tomcat server, to run the Java application, we can share that image to testing and production environment. 
· Then, they can run that image which creates a container where the Java application gets hosted in an isolated environment.
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Are containers stateless or stateful?
· By design, containers are lightweight, ephemeral and stateless. 
· But organizations have many options when it comes to using containers for stateful applications. 
· Orchestrators such as Kubernetes spin up, stop, destroy and re-create containers in response to changing workload requirements.

Bringing Statefulness to Containers
· How can a container be stateful, if it doesn't have persistent storage?
·  There are now several well-established vendors that do provide persistent storage for containers, including databases for storing container state information.
· Companies such as Docker, Kubernetes, Flocker, and Mesosphere provide ways of managing both stateless and stateful containers using persistently stored data.
·  Most of the key vendors in the container industry appear to see statefulness as a major part of the container landscape, and one that is here to stay, rather than being a vestige of pre-container development style. 
· For most developers, the question is not whether to use stateful containers, but when they should be used.
When should you use stateful containers
· When should you use stateful containers, and when are stateless containers better? 
· Not surprisingly, the answer depends to a large extent on the kind of software that you are deploying, and what it needs to do.
·  Does it need to save information about its state, or could it achieve the same results if it were stateless?
· For applications which were designed (or have been refactored) for containers, you can usually ask this question at the microservice level. 
· It may turn out that only a handful of containers actually need to store state data, allowing the rest to be run statelessly.
Types of Containers in Docker
There are two types of containers in Docker:
Stateless Containers:
·  These types of containers do not persist data, i.e., their data is deleted as soon as they are stopped. 
· These containers are typically used to run stateless applications such as web servers, reverse proxies, and load balancers.
Stateful Containers:
·  These types of containers persist data and are typically used to run stateful applications such as databases, message queues, and file servers. 
· The data stored inside the container is persistent even if the container is stopped or recreated.
Additionally, we have -
      Ephemeral Containers:
·  These types of containers are used for short-lived tasks, such as running one-off commands, performing CI/CD pipeline tasks, etc. They are typically used for testing and debugging purposes. 
· They are created and destroyed very quickly and are not meant to be long-lived.
· It’s worth noting that you can use both stateless and stateful containers together to create a complete application. 
· For example, you might use a stateless container to run a web server and a stateful container to run a database, and use the network to connect them.
Creating Container from Dockerfile 
 From Docker file  to Image  to Container
· It all starts with a script, set of instructions that define how to build a specific Docker image. 
· This script is called a Dockerfile. 
· The file automatically executes the outlined commands and creates a Docker image.
· The command for creating an image from a Dockerfile is docker build.
· The image is then used as a template (or base), which a developer can copy and use it to run an application. 
· The application needs an isolated environment in which to run – a container.
· This environment is not just a virtual “space”. It entirely relies on the image that created it. 
· The source code, files, dependencies, and binary libraries, which are all found in the Docker image, are the ones that make up a container.
· To create a container layer from an image, use the command docker create.
· Finally, after you have launched a container from an existing image, you start its service and run the application.
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Example : 
Creating an App image/container from Docker file 

Step 1: Install the Docker software 
· The first step is to get Docker set up on your machine. 
· For the purposes of this tutorial, we’ll be using Docker Desktop on Windows.
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Step 2: Create the Docker file - with file name as dockerfile
· Creating a Dockerfile is as simple as creating a text file in your text editor with all the commands you would call in the command line to assemble an image.
·  You can name this file whatever you want, but we’ll be using the name “dockerfile” for simplicity.. 
· Create a Dockerfile in the ‘/app’ directory of your project folder.
· In dockerfile ,we set the working directory to ‘/app’ inside the container. 
· Then, we copy the application files from the host machine to the container’s ‘/app’ directory.
· Next, we use the ‘RUN’ instruction to update the package manager and install Python 3 and Flask inside the container. This ensures that the necessary dependencies are installed.

· Finally, we use the ‘CMD’ instruction to specify the command that should be executed when the container starts. 
· In this case, it runs the ‘app.py’ Python script using the Python 3 interpreter.
· This Dockerfile can be used to build a Docker image, which is a template for creating containers. 
· When the image is built and a container is created from it, the container will have the specified dependencies and will run the specified command when started.
//Docker file content //
# Creating a Dockerfile for Python 3
# Use an existing base image from Docker Hub
FROM ubuntu:latest
# Set the working directory inside the container
WORKDIR /app
# Copy the application files from the host to the container
COPY . .
# Install any required dependencies
RUN apt-get update && apt-get install -y python3 python3-pip
# Install Flask using pip
RUN pip3 install Flask
# Expose a port on the container
EXPOSE 5000
# Specify the command to run when the container starts
CMD ["python3", "app.py","–host", "0.0.0.0"]
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Step 3: Create the app file app.py  – with flask app code
· In order for this tutorial to work, we’ll also create a simple Flask app in an ‘app.py’ file within the same directory:
· app.py’ file has the flask sample application code
// App file content //
from flask import Flask
app = Flask(__name__)
@app.route(‘/’)
def my_app():
    return ‘This is a Flask App’
if __name__ == ‘__main__’:
    app.run(host=’0.0.0.0′, port=5000) In this example, we start with an Ubuntu base image pulled from Docker Hub. 
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Step 4: Build the docker image 
· With Dockerfile in hand, you can build the Docker image using the ‘docker build’ command while providing a name for the image with the ‘t’ flag (e.g., ‘myapp:latest’).
          In the terminal type: 
	       docker build -t myapp:latest .


         (Don’t forget the ‘.’ at the end)
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Step 5: Verify the docker image which is built. 
· You can verify that an image has been created by clicking the Images tab in Docker Desktop (or) from the command line 
· Each image can be identified by a name, a tag, and an image ID.
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Step 6: Create/run the container from Docker image : 
· It’s time to create and run a container off of that image. 

Type the following command into the terminal 
	docker run -p 5000:5000 --name flask_app_cont -d myapp:latest
· This command will create and run the container  flask_app_cont
· The '–name' tag tells Docker to create and run a container named
 'flask_app_cont' based off of the image 'myapp:latest'
· You now have an Ubuntu environment running the 'app.py' 
file specified within the Dockerfile and Python 3.
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Step 7: View the running container: 
· You can view your newly created active container in Docker Desktop 
· You can also view  from command line 
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Step 8: Access/Check the app from Browser: 
· If you navigate to http://localhost:5000 in the browser
· It will allow you to see your app printing the text “This is a Flask App.” 
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# Creating a Dockerfile for Python 3

# Use an existing base image from Docker Hub

FROM ubuntu:latest

# set the working directory inside the container

WORKDIR /app

# Copy the application files from the host to the container
CoPY . .

# Install any required dependencies

RUN apt-get update & apt-get install -y python3 python3-pip
# Install Flask using pip

RUN pip3 install Flask

# Expose a port on the container

EXPOSE 5000

# Specify the command to run when the container starts

cMD [“python3”, “app.py","-host", "0.0.0.0"]
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from flask import Flask

app = Flask(__name_)

@app.route('/")

def my_app(
return '<h1 style="color:blue;">This is a <span style="color:red;">Flask</span> App</h1>’

if _name_ == '_main_':
app.run(host="0.0.0.0", port=5000)
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$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
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postgres latest b0b90c1d9579 5 weeks ago 425MB

nginx alpine 2b70e4aaac6b 3 months ago 42.6MB
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app.py dockerfile
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$ docker build -t myapp:latest . _?
#0 bu1lding with "default" instance u§ing docker driver

#1
#1
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#2

[internal] Toad build definition from dockerfile
transferring dockerfile: 5668 done
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[internal] Toad metadata for docker.io/library/ubuntu:latest

#2 ...
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[auth] Tibrary/ubuntu:pull token for registry-1l.docker.io
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[internal] Toad metadata for docker.io/library/ubuntu:latest
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[internal] Tload .dockerignore

transferring context: 2B done
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[CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

shanmugave Tu@DESKTOP-QQ3CB6K MINGW32 /e/dba_devops_class_docs/docker_Tlab/app
$ docker run -p 5000:5000 --name flask_app_cont -d myapp:latest -€>
51c628483a072d28d7c36fdfe6449d08e8abf3e4ce86810accelff930ff59fe0

shanmugave Tu@DESKTOP-QQ3CB6K MINGW32 /e/dba_devops_class_docs/docker_Tlab/app

$ docker ps
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