Creating Docker Container using Dockerfile :

Use Case of Docker:
· Consider a team working on a Java application. Various groups are involved in the Software Development lifecycle: designing, development, testing, production, deployment, etc.

Step 1: The developer will create an environment that includes a Tomcat server.
Step 2: The tester must test the application after it has been developed. The tester will now create a new Tomcat environment to test the application from scratch.
Step 3: The application will be deployed to the production server when the testing is completed. Again, Tomcat must be installed in the production environment to host the Java application.

· The same Tomcat environment setup is done three times. While various teams are engaged in launching the application
· To overcome this problem, we use Docker.
· In Docker, if we can create an image that contains information about required packages, say Tomcat server, to run the Java application, we can share that image to testing and production environment.
· Then, they can run that image which creates a container where the Java application gets hosted in an isolated environment.
[image: Docker Fundamentals]

Are containers stateless or stateful?
· By design, containers are lightweight, ephemeral and stateless.
· But organizations have many options when it comes to using containers for stateful applications.
· Orchestrators such as Kubernetes spin up, stop, destroy and re-create containers in response to changing workload requirements.

Bringing Statefulness to Containers
· How can a container be stateful, if it doesn't have persistent storage?
· There are now several well-established vendors that do provide persistent storage for containers, including databases for storing container state information.
· Companies such as Docker, Kubernetes, Flocker, and Mesosphere provide ways of managing both stateless and stateful containers using persistently stored data.
· Most of the key vendors in the container industry appear to see statefulness as a major part of the container landscape, and one that is here to stay, rather than being a vestige of pre-container development style.
· For most developers, the question is not whether to use stateful containers, but when they should be used.
When should you use stateful containers
· When should you use stateful containers, and when are stateless containers better?
· Not surprisingly, the answer depends to a large extent on the kind of software that you are deploying, and what it needs to do.
· Does it need to save information about its state, or could it achieve the same results if it were stateless?
· For applications which were designed (or have been refactored) for containers, you can usually ask this question at the microservice level.
· It may turn out that only a handful of containers actually need to store state data, allowing the rest to be run statelessly.
Types of Containers in Docker
There are two types of containers in Docker:
Stateless Containers:
· These types of containers do not persist data, i.e., their data is deleted as soon as they are stopped.
· These containers are typically used to run stateless applications such as web servers, reverse proxies, and load balancers.
Stateful Containers:
· These types of containers persist data and are typically used to run stateful applications such as databases, message queues, and file servers.
· The data stored inside the container is persistent even if the container is stopped or recreated.
Additionally, we have -
 Ephemeral Containers:
· These types of containers are used for short-lived tasks, such as running one-off commands, performing CI/CD pipeline tasks, etc. They are typically used for testing and debugging purposes.
· They are created and destroyed very quickly and are not meant to be long-lived.
· It’s worth noting that you can use both stateless and stateful containers together to create a complete application.
· For example, you might use a stateless container to run a web server and a stateful container to run a database, and use the network to connect them.
Creating Container from Dockerfile
 From Docker file to Image to Container
· It all starts with a script, set of instructions that define how to build a specific Docker image.
· This script is called a Dockerfile.
· The file automatically executes the outlined commands and creates a Docker image.
· The command for creating an image from a Dockerfile is docker build.
· The image is then used as a template (or base), which a developer can copy and use it to run an application.
· The application needs an isolated environment in which to run – a container.
· This environment is not just a virtual “space”. It entirely relies on the image that created it.
· The source code, files, dependencies, and binary libraries, which are all found in the Docker image, are the ones that make up a container.
· To create a container layer from an image, use the command docker create.
· Finally, after you have launched a container from an existing image, you start its service and run the application.

[image: how a docker container is created]

Example :
Creating an App image/container from Docker file

Step 1: Install the Docker software
· The first step is to get Docker set up on your machine.
· For the purposes of this tutorial, we’ll be using Docker Desktop on Windows.
[image:]

Step 2: Create the Docker file - with file name as dockerfile
· Creating a Dockerfile is as simple as creating a text file in your text editor with all the commands you would call in the command line to assemble an image.
· You can name this file whatever you want, but we’ll be using the name “dockerfile” for simplicity..
· Create a Dockerfile in the ‘/app’ directory of your project folder.
· In dockerfile ,we set the working directory to ‘/app’ inside the container.
· Then, we copy the application files from the host machine to the container’s ‘/app’ directory.
· Next, we use the ‘RUN’ instruction to update the package manager and install Python 3 and Flask inside the container. This ensures that the necessary dependencies are installed.

· Finally, we use the ‘CMD’ instruction to specify the command that should be executed when the container starts.
· In this case, it runs the ‘app.py’ Python script using the Python 3 interpreter.
· This Dockerfile can be used to build a Docker image, which is a template for creating containers.
· When the image is built and a container is created from it, the container will have the specified dependencies and will run the specified command when started.
//Docker file content //
Creating a Dockerfile for Python 3
Use an existing base image from Docker Hub
FROM ubuntu:latest
Set the working directory inside the container
WORKDIR /app
Copy the application files from the host to the container
COPY . .
Install any required dependencies
RUN apt-get update && apt-get install -y python3 python3-pip
Install Flask using pip
RUN pip3 install Flask
Expose a port on the container
EXPOSE 5000
Specify the command to run when the container starts
CMD ["python3", "app.py","–host", "0.0.0.0"]

[image:]

Step 3: Create the app file app.py – with flask app code
· In order for this tutorial to work, we’ll also create a simple Flask app in an ‘app.py’ file within the same directory:
· app.py’ file has the flask sample application code
// App file content //
from flask import Flask
app = Flask(__name__)
@app.route(‘/’)
def my_app():
 return ‘This is a Flask App’
if __name__ == ‘__main__’:
 app.run(host=’0.0.0.0′, port=5000) In this example, we start with an Ubuntu base image pulled from Docker Hub.

[image:]
Step 4: Build the docker image
· With Dockerfile in hand, you can build the Docker image using the ‘docker build’ command while providing a name for the image with the ‘t’ flag (e.g., ‘myapp:latest’).
 In the terminal type:
	 docker build -t myapp:latest .

 (Don’t forget the ‘.’ at the end)
[image:]

[image:]

[image:]

Step 5: Verify the docker image which is built.
· You can verify that an image has been created by clicking the Images tab in Docker Desktop (or) from the command line
· Each image can be identified by a name, a tag, and an image ID.
[image:]

[image:]

Step 6: Create/run the container from Docker image :
· It’s time to create and run a container off of that image.

Type the following command into the terminal
	docker run -p 5000:5000 --name flask_app_cont -d myapp:latest
· This command will create and run the container flask_app_cont
· The '–name' tag tells Docker to create and run a container named
 'flask_app_cont' based off of the image 'myapp:latest'
· You now have an Ubuntu environment running the 'app.py'
file specified within the Dockerfile and Python 3.

[image:]

	

Step 7: View the running container:
· You can view your newly created active container in Docker Desktop
· You can also view from command line
[image:]

[image:]
Step 8: Access/Check the app from Browser:
· If you navigate to http://localhost:5000 in the browser
· It will allow you to see your app printing the text “This is a Flask App.”

[image:]
Written by Vinod Sairam
The Database Administrator who helps to manage Enterprise Databases who develops Devops Engineering ideas to support Database tasks, Infrastructure tasks and to reach the right audience.
Assisted by: Shanmugavelu (Database-Devops Engineer)

image3.png
Search for images, containers, volumes.

Containers i fecdback 2

Container CPU usage Container memory usage Show charts

NNo containers are running. No containers are running.

Q search

@> Only show running containers
&) Dev Environments seta

> Docker Scout O Name Image Status CPU (%) Port(s) Last started Actions

image4.png
v N B> ThisRemnNewNolume:E)ndbasderops:dassocsyydockenlabynapn

B dockerfile - Notepad

File Edit View

Creating a Dockerfile for Python 3

Use an existing base image from Docker Hub

FROM ubuntu:latest

set the working directory inside the container

WORKDIR /app

Copy the application files from the host to the container
CoPY . .

Install any required dependencies

RUN apt-get update & apt-get install -y python3 python3-pip
Install Flask using pip

RUN pip3 install Flask

Expose a port on the container

EXPOSE 5000

Specify the command to run when the container starts

cMD [“python3”, “app.py","-host", "0.0.0.0"]

image5.png
© 7> ThisPC > NewVolume (E) > dba_devops_class.docs > docker.lab > app
E |app* Notepad

File Edit View

from flask import Flask

app = Flask(__name_)

@app.route('/")

def my_app(
return '<h1 style="color:blue;">This is a Flask App</h1>’

if _name_ == '_main_':
app.run(host="0.0.0.0", port=5000)

image6.png
shanmugave Tu@DESKTOP-QQ3CB6K MINGW32 /e/dba_devops_class_docs/docker_lab/app
$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
hello_world_nginx latest 952e56125ed7 24 hours ago 42.6MB
postgres latest b0b90c1d9579 5 weeks ago 425MB

nginx alpine 2b70e4aaac6b 3 months ago 42.6MB

image7.png
$ pwd
/e/dba_devops_class_docs/docker_1ab/app

shanmugave Tu@DESKTOP-QQ3CB6K MINGW32 /e/dba_devops_class_docs/docker_lab/app
$ 1s
app.py dockerfile

shanmugave Tu@DESKTOP-QQ3CB6K MINGW32 /e/dba_devops_class_docs/docker_lab/app

$ docker build -t myapp:latest . _?
#0 bu1lding with "default" instance u§ing docker driver

#1
#1
#1

#2

[internal] Toad build definition from dockerfile
transferring dockerfile: 5668 done
DONE 0.0s

[internal] Toad metadata for docker.io/library/ubuntu:latest

#2 ...

#3
#3

#2
#2

#4
#4
#4

#5
#5

#6
#6
#6

#7
#7

[auth] Tibrary/ubuntu:pull token for registry-1l.docker.io

DONE 0.0s

[internal] Toad metadata for docker.io/library/ubuntu:latest
DONE 2.5s

[internal] Tload .dockerignore

transferring context: 2B done
DONE 0.0s

[1/5] FRoM docker.io/Tibrary/ubuntu:latest@sha256:e9569c25505f33ff72e88b2990887c9dcf230f23259da296eb814fc2b41af999
DONE 0.0s

[internal] Toad build context
transferring context: 5968 done
DONE 0.0s

[2/5] WORKDIR /app
CACHED

image8.png
#10

[5/5]

RUN pip3 install Flask

#10 0.880 collecting Flask

#10 1.050 Downloading flask-3.0.2-py3-none-any.whl (101 kB)

#10 1.110 101.3/101.3 kB 2.0 MB/s eta 0:00:00

#10 1.171 collecting blinker>=1.6.2

#10 1.205 Downloading blinker-1.7.0-py3-none-any.whl (13 kB)

#10 1.282 collecting click>=8.1.3

#10 1.319 Dpownloading click-8.1.7-py3-none-any.wh1l (97 kB)

#10 1.351 @ 97.9/97.9 kB 3.1 MB/s eta 0:00:00

#10 1.409 collecting itsdangerous>=2.1.2

#10 1.448 Downloading itsdangerous-2.1.2-py3-none-any.whl (15 kB)

#10 1.535 collecting Jinja2>=3.1.2

#10 1.584 Downloading Jinja2-3.1.3-py3-none-any.whl (133 kB)

#10 1.640 @ 133.2/133.2 kB 2.3 MB/s eta 0:00:00

#10 1.731 collecting werkzeug>=3.0.0

#10 1.771 pownloading werkzeug-3.0.1-py3-none-any.whl (226 kB)

#10 1.864 @ 226.7/226.7 KB 2.5 MB/s eta 0:00:00

#10 2.039 collecting Markupsafe>=2.0

#10 2.094 Downloading Markupsafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.many1inux2014_x86_64.wh1 (25 kB)
#10 2.132 Installing collected packages: Markupsafe, itsdangerous, click, blinker, werkzeug, Jinja2, Flask
#10 2.435 successfully installed Flask-3.0.2 Jinja2-3.1.3 Markupsafe-2.1.5 werkzeug-3.0.1 blinker-1.7.0 c1ick-8.
#10 2.435 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour wit
nager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv

#10 DONE 2.7s

#11 exporting to image

#11 exporting layers

#11 exporting layers 1.3s done

#11 writing image sha256:ea5c7d72eb9d098cfc8d432ddb89dfee6c5daf203fbdcf09112353af30c86b5f done

#11 naming to docker.io/library/myapp:Tlatest done

#11 DONE 1.3s

view build details: docker-desktop://dashboard/build/default/default/zfsqbcpc40t5fzf3fki7cw3po

what's Next?
view a summary of image vulnerabilities and recommendations - docker scout quickview

shanmuaave lu@DESKTOP-003cB6K MINGW3?2 /e/dba devopns class docs/docker lab/app

image9.png
& docker

@ containers Images cie feedvack =
Local Hub
@& Volumes
i 4images Last refresh: 2 hours ago
\\ Builds new 946.53 MB / 1.43 GB in use g g0 C
&) Dev Environments seta Q search = m
Docker Scout
] Name Tag Status Created Size Actions
Extensions H myapp . ~
: O - latest Inuse 51 minutesag 47878 MB » (]
810d4e157e5d
q hello_world_nginx
Add Extensions e > §
® O TS O latest Inuse 1 day ago 42.59 MB]
postgres _
>
O TSR @ latest Inuse 1 month ago 425.15MB []
nginx
O alpine Unused 4 months ago 42.59 MB > []

2b70e4aaacéb O

image10.png
shanmugave Tu@DESKTOP-QQ3CB6K MINGW32 /e/dba_devops_class_docs/docker_Tlab/app
$ docker images —=»

REPOSITORY TAG IMAGE ID CREATED SIZE

m e 4 latest 810d4el57e5d 52 minutes ago 479vB
ello_world_nginx latest 952e e 26 hours ago 42.6MB
postgres latest b0b90c1d9579 5 weeks ago 425MB
nginx alpine 2b70e4aaac6b 3 months ago 42.6MB

image11.png
shanmugave Tu@DESKTOP-QQ3CB6K MINGW32 /e/dba_devops_class_docs/docker_Tlab/app
$ docker ps
[CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

shanmugave Tu@DESKTOP-QQ3CB6K MINGW32 /e/dba_devops_class_docs/docker_Tlab/app
$ docker run -p 5000:5000 --name flask_app_cont -d myapp:latest -€>
51c628483a072d28d7c36fdfe6449d08e8abf3e4ce86810accelff930ff59fe0

shanmugave Tu@DESKTOP-QQ3CB6K MINGW32 /e/dba_devops_class_docs/docker_Tlab/app

$ docker ps
[CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
51c628483a07 myapp:latest "python3 app.py -hos.." 3 seconds ago Up 2 seconds 0.0.0.0:5000->5000/tcp flask_app_cont

—_—

image12.png
Search for images, containers, volumes.

@ Containers Containers i fecdback 2

Container CPU usage Container memory usage Show charts

0.02% / 400% (4 CPUs available) 18.37MB / 7.45GB

Q search

@ Only show running containers
&) Dev Environments seta

Docker Scout O Name Image Status CPU (%) Port(s) Last started Actions
flask app_cont
. Runnin, 0.01% 5000:5000 1 2 minutes ago [] L
Extensions : d w 416f5436556¢ O myappate 9 = 9
hello_world
o v L]
@ AddExensions (] 33042930287 [Dello-world Exited (255) 0% 80:80 & 1 day ago > L]
wonderful_laland¢
gl 6 : z]
] glesr7aqars p Postares Exited 0% 5432:5432 % 3 days ago > L]
myapp
] Exited (255) 0% 5000:5000 &% 5 days ago > [

9d4cf349a88a O

image13.png
shanmugave Tu@DESKTOP-QQ3CB6K MINGW32 ~ (master)

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
41cf543b556¢ myapp:latest "python3 app.py -hos.." 45 hours ago Up 11 seconds 0.0.0.0:5000->5000/tcp flask_app_cont

shanmugave Tu@DESKTOP-QQ3CB6K MINGW32 ~ (master)
$

image14.png
€ G O loclhostsios
This is a Flask App

image1.jpeg
Docker File

BUILD

Docker Image

RUN

Docker Container

image2.png
Socker docker

