 OPERATORS IN PYTHON

Operator: It is defined as a symbol which is responsible for a particular operation between two operands.

Python supports different types of operators:
1. Arithmetic Operators
2. Assignment Operators
3. Logical Operators
4. Comparison Operators
5. Bitwise Operators
6. Identity Operators
7. Membership Operators

1.Arithmetic Operators: They are used to perform Mathematical operations between two operands.i.e Addition,Subtraction,Multiplication,Division etc.
Use Case: used to perform basic arithmetic operators

	 Operator
	 Description
	 Syntax
	 Example(x=5,y=2)

	 + (Addition)
	Add two Operands
	 (x+y)
	5+2=10

	- (Subtraction)
	Subtract two Operands
	 (x-y)

	5-2=3

	* (Multiplication)
	multiply two Operands
	 (x*y)

	5*2=10

	/ (Division)
	Divide first operand by second
	 (x/y)

	5/2=2.5

	** (Power)
	First Operand raised to power of second
	 (x**y)

	5**2=25

	% (Modulus)
	Remainder when first Operand is Divide by second
	 (x%y)

	5%2=1

	// (floor Division)
	Divide first operand by second
	 (X//y)

	5//2=2

Example:
INPUT:
a = 18
b = 12
Addition of numbers
su= a + b
#Subtraction of numbers
sub = a - b
Multiplication of numbers
mul = a * b
Division(float) of numbers
div1= a / b
Division(floor) of numbers
div2 = a // b
Modulo of both numbers
mod=a%b
Power of the numbers
power = a ** b
print("Addition of numbers:",su)
print("Subtraction of numbers:", sub)
print("Multiplication of numbers:", mul)
print("Division(float) of numbers:", div1)
print("Division(floor) of numbers:", div2)
print("Modulo of both numbers:",mod)
print("Power of the numbers:", power)

Output

Addition of numbers: 30
Subtraction of numbers: 6
Multiplication of numbers: 216
Division(float) of numbers: 1.5
Division(floor) of numbers: 1
Modulo of both numbers: 6
Power of the numbers: 1156831381426176

ASSIGNMENT OPERATORS
Assignment operators: They are used to assign values of right expression to the left operand .
Use case : used to manipulate variables, most commonly used in loops.
	Operator
	Description
	Syntax(take s and t)

	(=)
	Assign value of right side of expression to left side operand
	s=t

	(+=)
	Add right operand from left operand and then assign to left operand
	s+=t (or) s=s+t

	(-=)
	Subtract right operand from left operand and then assign to left operand
	s-=t (or) s=s-t

	(*=)
	Multiply right operand from left operand and then assign to left operand
	s*=t (or) s=s*t

	(/=)
	Divide left operand with right operand and then assign to left operand
	s/=t (or) s=s/t

	(%=)
	Takes modulus using left and right operands and assign the result to left operand
	s%=t (or) s=s%t

	(**=)
	Calculate exponent value and assign value to left operand
	s**=t (or) s=s**t

	(//=)
	Divide left operand with right operand and then assign the value(floor) to left operand
	s//=t (or) s=s//t

Example:
#assigning the value
s = 10
t = 5
print(s)
adding and assigning
s+=t
print(s)
#subtracting and assigning
t-=s
print(t)
multiply and assigning
t *=t
print(t)
#divide and assigning
t/=s
print(t)

OUTPUT:
10
15
-10
100
6.666666666666667

Comparison operators
Comparison operators compare the values of the two operands and return a True or False i.e Boolean Value
Use case :to evaluate conditions and make logical decisions

	Operator
	Description
	Syntax

	(==) Equal to
	True if both operands are equal
	S==T

	(!=) Not Equal to
	True if operands are not equal
	S!=T

	(>) Greater than
	True if the left operand is greater than the right
	S>T

	(<) Less than
	True if the left operand is Less than the right
	S<T

	(>=) Greater than or equal to
	True if the left operand is greater than or equal to the right
	S>=T

	(<=) Less than or equal to
	True if the left operand is less than or equal to the right

	S<=T

Example:
INPUT:
s = 10
t = 2
#validate for equality
print(s ==t)
#validate for unequality
print (s !=t)
validate for greater than
print (s > t)
#validate for less than
print (s < t)
#validate for greater than or equal to
print (s >= t)
#validate for less than or equal to
print (s <= t)

OUTPUT:
False
True
True
False
True
False

BITWISE OPERATORS

Bitwise Operators: performs bit by bit operations on two operands.
Use case : mostly used in low level programming like hardware manipulation and optimizing the algorithms

	Operator
	Description
	Syntax(X, Y)

	 & (BITWISE AND)
	Resulting bit will be 1 only if both the bits are 1 else 0
	X&Y

	| (BITWISE OR)
	Resulting bit will be 1 if either of the bits is 1
	X|Y

	~ (BITWISE NOT)
	Resulting will be compliment of the given operand
	~X

	^ (BITWISE XOR)
	Resulting will be 1 when both the bits are different otherwise 0
	X^Y

	>> (RIGHT SHIFT)
	Shift the left operand bits towards the right for right operand number of times
	X>>Y

	<< (LEFT SHIFT)
	Shift the left operand bits towards the left for the right operand number of times
	X<<Y

Example:
INPUT:
s = 10
t = 12
print("The binary value of s:",bin(s))
print("The binary value of t:", bin(t))
#Bitwise AND
print("Result of BITWISE AND is ", s&t, ":" ,bin(s&t))
#Bitwise OR
print("Result of BITWISE OR is ",s|t, ":" ,bin(s|t))
#Bitwise not
print("Result of BITWISE not is ",~s,":" ,bin(~s))
Bitwise XOR
print("Result of BITWISE XOR is ",s^t,":" ,bin(s^t))
#Bitwise Right shift
print("Result of BITWISE Right shift is ",s>>t,":" ,bin(s>>t))
Bitwise left shift
print("Result of BITWISE left shift is ",s<<t,":" ,bin(s<<t))

Output:

The binary value of s: 0b1010
The binary value of t: 0b1100
Result of BITWISE AND is 8 : 0b1000
Result of BITWISE OR is 14 : 0b1110
Result of BITWISE not is -11 : -0b1011
Result of BITWISE XOR is 6 : 0b110
Result of BITWISE Right shift is 0 : 0b0
Result of BITWISE left shift is 40960 : 0b1010000000000000

LOGICAL OPERATORS

Logical Operators: used in the expression evaluation to make a decision.
They are three logical operators 1.Logical AND 2.Logical OR 3.Logical NOT
Use case : used to combine multiple conditions in the decision making process and filtering the data.

	Operator
	Description
	Syntax(S,T are operands)

	AND
	True if both the operands are False
	 S and T

	OR
	True when either of the operands is True
	 S or T

	NOT
	True if the operand is False
	 not S

Example:
s=True
t = False
#Logical and print(s and t)
print(s and t)
#Logical or print(s or t)
print(s or t)
#logical not print(not s)
print(not t)
print(not s)

OUTPUT:
False
True
True
False

 IDENTITY OPERATORS

They are used to check if two values are located in the same part of memory or both belong to the same class or not.
There are two identical operators:
 1.is
 	 2.is not
Use case : used to compare memory locations of the object

	Operator
	Description of operator

	is
	True if the two operands share same memory location

	Is not
	True if the two operands share different memory location

We can verify it using the in built function of python called id ()

Example:
INPUT:

t = 99
m = 99
#checking for Unique id
print("the location of t is ", id(t))
print("the location of m is ", id(m))
print(t is m)
print(t is not m)
v = 60
k = 90
print("the location of v is ", id(v))
print("the location of k is ", id(k))
print(v is not k)
print(v is k)

OUTPUT:
the location of t is 140680953024864
the location of m is 140680953024864
True
False
the location of v is 140680953023616
the location of k is 140680953024576
True
False

MEMBERSHIP OPERATORS
Membership operators:it is used to check whether a value is present in the sequence or not
They are two membership Operators:
1. in
2. not in

Example:
INPUT:

l= [10, 20, 30, 40, 60, 50, 90]
#using in Operator
if 60 in l:
 print("60 is Present in list l")
else:
 print("60 is Not Present in list l")
#using not in operator
if 80 not in l:
 print("80 is not present in list l")
else:
 print("80 is present in list l")

OUTPUT:

60 is Present in list l
80 is not present in list l

